Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, 10 Xibeiwang East Road, Haidian, Beijing 100094, China
Matter and Radiation at Extremes
2023, 8(6): 063001
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People’s Republic of China
An impact structure 1400 m in diameter, formed by a bolide impact, has been discovered on Baijifeng Mountain in Tonghua City in Northeast China’s Jilin province. The impact structure takes the form of a cirque-shaped depression on the top of the mountain and is located in a basement mainly composed of Proterozoic sandstone and Jurassic granite. A large number of rock fragments composed mainly of sandstone, with a small amount of granite, are distributed on the top of Baijifeng Mountain. Planar deformation features (PDFs) have been found in quartz in the rock and mineral clasts collected from the surface inside the depression. The forms of the PDFs indexed in the quartz include among others, {101̄3}, {101̄2}, and {101̄1}. The presence of these PDFs provides diagnostic evidence for shock metamorphism and the impact origin of the structure. The impact event took place after the Jurassic Period and probably much later.
Matter and Radiation at Extremes
2023, 8(5): 058403
Author Affiliations
Abstract
1 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
3 University of Science and Technology of China, Hefei 230026, China
4 Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, China
5 State Key Laboratory of Superhard Materials, Institute of Physics, Jilin University, Changchun 130012, China
The recent report of superconductivity in nitrogen-doped lutetium hydride (Lu-H-N) at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors. However, the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim. In this work, using a reliable experimental protocol, we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature. With quantitative comparison of the temperature-dependent resistance between Lu-H-N and the pure lutetium before reaction, we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity. Herein, we also briefly discuss other issues recently raised in relation to the Lu-H-N system.
Matter and Radiation at Extremes
2023, 8(5): 058401
Author Affiliations
Abstract
1 Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People’s Republic of China
2 Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
3 College of Chemistry and Materials Science, Hebei University, Baoding 071002, People’s Republic of China
Topochemical reactions are a promising method to obtain crystalline polymeric materials with distance-determined regio- or stereoselectivity. It has been concluded on an empirical basis that the closest intermolecular C⋯C distance in crystals of alkynes, d(C⋯C)min, should reach a threshold of ∼3 Å for bonding to occur at room temperature. To understand this empirical threshold, we study here the polymerization of acetylene in the crystalline state under high pressure by calculating the structural geometry, vibrational modes, and reaction profile. We find d(C⋯C)min to be the sum of an intrinsic threshold of 2.3 Å and a thermal displacement of 0.8 Å (at room temperature). Molecules at the empirical threshold move via several phonon modes to reach the intrinsic threshold, at which the intermolecular electronic interaction is sharply enhanced and bonding commences. A distance–vibration-based reaction picture is thus demonstrated, which provides a basis for the prediction and design of topochemical reactions, as well as an enhanced understanding of the bonding process in solids.
Matter and Radiation at Extremes
2023, 8(5): 058402
Shu Cai 1,2Jing Guo 1Haiyun Shu 2Liuxiang Yang 2[ ... ]Liling Sun 1,2,3,a)
Author Affiliations
Abstract
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 Center for High Pressure Science and Technology Advanced Research, 100094 Beijing, China
3 University of Chinese Academy of Sciences, Beijing 100190, China
A material described as lutetium–hydrogen–nitrogen (Lu-H-N in short) was recently claimed to have “near-ambient superconductivity” [Dasenbrock-Gammon et al., Nature 615, 244–250 (2023)]. If this result could be reproduced by other teams, it would be a major scientific breakthrough. Here, we report our results of transport and structure measurements on a material prepared using the same method as reported by Dasenbrock-Gammon et al. Our x-ray diffraction measurements indicate that the obtained sample contains three substances: the face-centered-cubic (FCC)-1 phase (Fm-3m) with lattice parameter a = 5.03 Å, the FCC-2 phase (Fm-3m) with a lattice parameter a = 4.755 Å, and Lu metal. The two FCC phases are identical to the those reported in the so-called near-ambient superconductor. However, we find from our resistance measurements in the temperature range from 300 K down to 4 K and the pressure range 0.9–3.4 GPa and our magnetic susceptibility measurements in the pressure range 0.8–3.3 GPa and the temperature range down to 100 K that the samples show no evidence of superconductivity. We also use a laser heating technique to heat a sample to 1800 °C and find no superconductivity in the produced dark blue material below 6.5 GPa. In addition, both samples remain dark blue in color in the pressure range investigated.
Matter and Radiation at Extremes
2023, 8(4): 048001
Author Affiliations
Abstract
1 Center for High Pressure Science and Technology Advanced Research, 10 Dongbeiwang West Road, Haidian, Beijing 100094, China
2 Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
High pressures induce changes of properties and structures that could greatly impact materials science if such changes were preserved for ambient applications. Mimicking the geological process of diamond formation that the pressures and high-pressure phases in diamond inclusions can be preserved by the strong diamond envelope, we discuss the perspectives that such process revolutionizes high-pressure science and technology and opens a great potential for creation of functional materials with extremely favorable properties.
Matter and Radiation at Extremes
2022, 7(6): 068102
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People’s Republic of China
Water has remarkable effects on the properties of mantle rocks, but, owing to the high temperatures in the mantle, uncertainties remain about how and how much water is transported into the deep Earth. Recent studies have shown that stishovite and post-stishovites as high-pressure phases of SiO2 have the potential to carry weight percent levels of water into the Earth’s interior along the geotherm of the subducting oceanic crust. As slabs are subducted to the deepest mantle, dehydration of these dense hydrous silica phases has the potential to change the physicochemical properties of the mantle by reducing melting points, forming new high-pressure phases, and enhancing the oxygen fugacity heterogeneity of the lower mantle.
Matter and Radiation at Extremes
2022, 7(6): 068101
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, 10 Xibeiwang East Road, Haidian, Beijing 100094, China
Matter and Radiation at Extremes
2022, 7(6): 063001
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
Hydrogen (H) is the most abundant element in the known universe, and on the Earth’s surface it bonds with oxygen to form water, which is a distinguishing feature of this planet. In the Earth’s deep mantle, H is stored hydroxyl (OH-) in hydrous or nominally anhydrous minerals. Despite its ubiquity on the surface, the abundance of H in the Earth’s deep interior is uncertain. Estimates of the total H budget in the Earth’s interior have ranged from less than one hydrosphere, which assumes an H-depleted interior, to hundreds of hydrospheres, which assumes that H is siderophile (iron-loving) in the core. This discrepancy raises the questions of how H is stored and transported in the Earth’s deep interior, the answers to which will constrain its behavior in the deep lower mantle, which is defined as the layer between 1700 km depth and the core–mantle boundary.
Matter and Radiation at Extremes
2021, 6(6): 068101
Author Affiliations
Abstract
Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
Born’s valence force-field model (VFM) established a theoretical scheme for calculating the elasticity, zero-point optical mode, and lattice dynamics of diamond and diamond-structured solids. In particular, the model enabled the derivation of a numerical relation between the elastic moduli and the Raman-active F2g mode for diamond. Here, we establish a relation between the diamond Raman frequency ω and the bulk modulus K through first-principles calculation, rather than extrapolation. The calculated K exhibits a combined uncertainty of less than 5.4% compared with the results obtained from the analytical equation of the VFM. The results not only validate Born’s classic model but also provide a robust Kω functional relation extending to megabar pressures, which we use to construct a primary pressure scale through Raman spectroscopy and the crystal structure of diamond. Our computations also suggest that currently used pressure gauges may seriously overestimate pressures in the multi-megabar regime. A revised primary scale is urgently needed for such ultrahigh pressure experiments, with possible implications for hot superconductors, ultra-dense hydrogen, and the structure of the Earth’s core.
Matter and Radiation at Extremes
2021, 6(6): 068403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!